I\'m having a bit of difficulty figuring out how to recreate the following graphic of a spider (or radar) chart, using plotly. Actually, I can\'t even recreate it in the most re
I've made some progress with this, by faking it. Polar coords, seem to just hate me:
data:
df <- d <- structure(list(Year = c("2015", "2015", "2015", "2015", "2015",
"2015", "2015", "2015", "2015", "2015", "2015", "2015", "2015",
"2015", "2015", "2015", "2015", "2015", "2015", "2015", "2015",
"2015", "2015", "2015", "2016", "2016", "2016", "2016", "2016",
"2016", "2016", "2016", "2016", "2016", "2016", "2016", "2016",
"2016", "2016", "2016", "2016", "2016", "2016", "2016", "2016",
"2016", "2016", "2016"), Response = structure(c(1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L,
22L, 23L, 24L), .Label = c("Trustworthy", "Supportive", "Leading",
"Strong", "Dependable", "Consultative", "Knowledgeable", "Sensible",
"Intelligent", "Consistent", "Stable", "Innovative", "Aggressive",
"Conservative", "Visionary", "Arrogant", "Professional", "Responsive",
"Confident", "Accessible", "Timely", "Focused", "Niche", "None"
), class = "factor"), Proportion = c(0.54, 0.48, 0.33, 0.35,
0.47, 0.3, 0.43, 0.29, 0.36, 0.38, 0.45, 0.32, 0.27, 0.22, 0.26,
0.95, 0.57, 0.42, 0.38, 0.5, 0.31, 0.31, 0.12, 0.88, 0.55, 0.55,
0.31, 0.4, 0.5, 0.34, 0.53, 0.3, 0.41, 0.41, 0.46, 0.34, 0.22,
0.17, 0.28, 0.94, 0.62, 0.46, 0.41, 0.53, 0.34, 0.36, 0.1, 0.84
), n = c(240L, 240L, 240L, 240L, 240L, 240L, 240L, 240L, 240L,
240L, 240L, 240L, 240L, 240L, 240L, 240L, 240L, 240L, 240L, 240L,
240L, 240L, 240L, 240L, 258L, 258L, 258L, 258L, 258L, 258L, 258L,
258L, 258L, 258L, 258L, 258L, 258L, 258L, 258L, 258L, 258L, 258L,
258L, 258L, 258L, 258L, 258L, 258L)), .Names = c("Year", "Response",
"Proportion", "n"), row.names = c(NA, -48L), class = c("tbl_df",
"tbl", "data.frame"))
Create a circular mapping on a scatterplot, using basics:
df$degree <- seq(0,345,15) # 24 responses, equals 15 degrees per response
df$o <- df$Proportion * sin(df$degree * pi / 180) # SOH
df$a <- df$Proportion * cos(df$degree * pi / 180) # CAH
df$o100 <- 1 * sin(df$degree * pi / 180) # Outer ring x
df$a100 <- 1 * cos(df$degree * pi / 180) # Outer ring y
df$a75 <- 0.75 * cos(df$degree * pi / 180) # 75% ring y
df$o75 <- 0.75 * sin(df$degree * pi / 180) # 75% ring x
df$o50 <- 0.5 * sin(df$degree * pi / 180) # 50% ring x
df$a50 <- 0.5 * cos(df$degree * pi / 180) # 50% ring y
And plot. I cheated here to get them to connect in the last position by double plotting row 1 and 25 again:
p = plot_ly()
for(i in 1:24) {
p <- add_trace(
p,
x = c(d$o100[i],0),
y = c(d$a100[i],0),
evaluate = TRUE,
line = list(color = "#d3d3d3", dash = "3px"),
showlegend = FALSE
)
}
p %>%
add_trace(data = d[c(1:48,1,25),], x = o, y = a, color = Year,
mode = "lines+markers",
hoverinfo = "text",
text = paste(Year, Response,round(Proportion * 100), "%")) %>%
add_trace(data = d, x = o100, y = a100,
text = Response,
hoverinfo = "none",
textposition = "top middle", mode = "lines+text",
line = list(color = "#d3d3d3", dash = "3px", shape = "spline"),
showlegend = FALSE) %>%
add_trace(data = d, x = o50, y = a50, mode = "lines",
line = list(color = "#d3d3d3", dash = "3px", shape = "spline"),
hoverinfo = "none",
showlegend = FALSE) %>%
add_trace(data = d, x = o75, y = a75, mode = "lines",
line = list(color = "#d3d3d3", dash = "3px", shape = "spline"),
hoverinfo = "none",
showlegend = FALSE) %>%
layout(
autosize = FALSE,
hovermode = "closest",
autoscale = TRUE,
width = 800,
height = 800,
xaxis = list(range = c(-1.25,1.25), showticklabels = FALSE, zeroline = FALSE, showgrid = FALSE),
yaxis = list(range = c(-1.25,1.25), showticklabels = FALSE, zeroline = FALSE, showgrid = FALSE))
As you can see, I've got it with the exception of that last connecting line, and the lines that pass from the origin to the text of the response.