I\'ve got a 40MB file in the disk and I need to \"map\" it into memory using a byte array.
At first, I thought writing the file to a ByteArrayOutputStream would be the b
... but I find it takes about 160MB of heap space at some moment during the copy operation
I find this extremely surprising ... to the extent that I have my doubts that you are measuring the heap usage correctly.
Let's assume that your code is something like this:
BufferedInputStream bis = new BufferedInputStream(
new FileInputStream("somefile"));
ByteArrayOutputStream baos = new ByteArrayOutputStream(); /* no hint !! */
int b;
while ((b = bis.read()) != -1) {
baos.write((byte) b);
}
byte[] stuff = baos.toByteArray();
Now the way that a ByteArrayOutputStream manages its buffer is to allocate an initial size, and (at least) double the buffer when it fills it up. Thus, in the worst case baos
might use up to 80Mb buffer to hold a 40Mb file.
The final step allocates a new array of exactly baos.size()
bytes to hold the buffer's contents. That's 40Mb. So the peak amount of memory that is actually in use should be 120Mb.
So where are those extra 40Mb being used? My guess is that they are not, and that you are actually reporting the total heap size, not the amount of memory that is occupied by reachable objects.
So what is the solution?
You could use a memory mapped buffer.
You could give a size hint when you allocate the ByteArrayOutputStream
; e.g.
ByteArrayOutputStream baos = ByteArrayOutputStream(file.size());
You could dispense with the ByteArrayOutputStream
entirely and read directly into a byte array.
byte[] buffer = new byte[file.size()];
FileInputStream fis = new FileInputStream(file);
int nosRead = fis.read(buffer);
/* check that nosRead == buffer.length and repeat if necessary */
Both options 1 and 2 should have an peak memory usage of 40Mb while reading a 40Mb file; i.e. no wasted space.
It would be helpful if you posted your code, and described your methodology for measuring memory usage.
I'm thinking I could just extend ByteArrayOutputStream and rewrite this method, so to return the original array directly. Is there any potential danger here, given the stream and the byte array won't be used more than once?
The potential danger is that your assumptions are incorrect, or become incorrect due to someone else modifying your code unwittingly ...