I am a C# developer. Coming from OO side of the world, I start with thinking in terms of interfaces, classes and type hierarchies. Because of lack of OO in Haskell, sometimes I
Let's assume the following operations: Humans can speak, Dogs can bark, and all members of a species can mate with members of the same species if they have opposite gender. I would define this in haskell like this:
data Gender = Male | Female deriving Eq
class Species s where
gender :: s -> Gender
-- Returns true if s1 and s2 can conceive offspring
matable :: Species a => a -> a -> Bool
matable s1 s2 = gender s1 /= gender s2
data Human = Man | Woman
data Canine = Dog | Bitch
instance Species Human where
gender Man = Male
gender Woman = Female
instance Species Canine where
gender Dog = Male
gender Bitch = Female
bark Dog = "woof"
bark Bitch = "wow"
speak Man s = "The man says " ++ s
speak Woman s = "The woman says " ++ s
Now the operation matable
has type Species s => s -> s -> Bool
, bark
has type Canine -> String
and speak
has type Human -> String -> String
.
I don't know whether this helps, but given the rather abstract nature of the question, that's the best I could come up with.
Edit: In response to Daniel's comment:
A simple hierarchy for collections could look like this (ignoring already existing classes like Foldable and Functor):
class Foldable f where
fold :: (a -> b -> a) -> a -> f b -> a
class Foldable m => Collection m where
cmap :: (a -> b) -> m a -> m b
cfilter :: (a -> Bool) -> m a -> m a
class Indexable i where
atIndex :: i a -> Int -> a
instance Foldable [] where
fold = foldl
instance Collection [] where
cmap = map
cfilter = filter
instance Indexable [] where
atIndex = (!!)
sumOfEvenElements :: (Integral a, Collection c) => c a -> a
sumOfEvenElements c = fold (+) 0 (cfilter even c)
Now sumOfEvenElements takes any kind of collection of integrals and returns the sum of all even elements of that collection.