An analytical solution for cubic bezier length seems not to exist, but it does not mean that coding a cheap solution does not exist. By cheap I mean something like in the rang
first of first you should Understand the algorithm use in Bezier, When i was coding a program by c# Which was full of graphic material I used beziers and many time I had to find a point cordinate in bezier , whic it seem imposisble in the first look. so the thing i do was to write Cubic bezier function in my costume math class which was in my project. so I will share the code with you first.
//--------------- My Costum Power Method ------------------\\
public static float FloatPowerX(float number, int power)
{
float temp = number;
for (int i = 0; i < power - 1; i++)
{
temp *= number;
}
return temp;
}
//--------------- Bezier Drawer Code Bellow ------------------\\
public static void CubicBezierDrawer(Graphics graphics, Pen pen, float[] startPointPixel, float[] firstControlPointPixel
, float[] secondControlPointPixel, float[] endPointPixel)
{
float[] px = new float[1111], py = new float[1111];
float[] x = new float[4] { startPointPixel[0], firstControlPointPixel[0], secondControlPointPixel[0], endPointPixel[0] };
float[] y = new float[4] { startPointPixel[1], firstControlPointPixel[1], secondControlPointPixel[1], endPointPixel[1] };
int i = 0;
for (float t = 0; t <= 1F; t += 0.001F)
{
px[i] = FloatPowerX((1F - t), 3) * x[0] + 3 * t * FloatPowerX((1F - t), 2) * x[1] + 3 * FloatPowerX(t, 2) * (1F - t) * x[2] + FloatPowerX(t, 3) * x[3];
py[i] = FloatPowerX((1F - t), 3) * y[0] + 3 * t * FloatPowerX((1F - t), 2) * y[1] + 3 * FloatPowerX(t, 2) * (1F - t) * y[2] + FloatPowerX(t, 3) * y[3];
graphics.DrawLine(pen, px[i - 1], py[i - 1], px[i], py[i]);
i++;
}
}
as you see above, this is the way a bezier Function work and it draw the same Bezier as Microsoft Bezier Function do( I've test it). you can make it even more accurate by incrementing array size and counter size or draw elipse instead of line& ... . All of them depend on you need and level of accuracy you need and ... .
Returning to main goal ,the Question is how to calc the lenght???
well The answer is we Have tons of point and each of them has an x coorinat and y coordinate which remember us a triangle shape & especially A RightTriabgle Shape. so if we have point p1 & p2 , we can calculate the distance of them as a RightTriangle Chord. as we remeber from our math class in school, in ABC Triangle of type RightTriangle, chord Lenght is -> Sqrt(Angle's FrontCostalLenght ^ 2 + Angle's SideCostalLeghth ^ 2);
and there is this relation betwen all points we calc the lenght betwen current point and the last point before current point(exmp p[i - 1] & p[i]) and store sum of them all in a variable. lets show it in code bellow
//--------------- My Costum Power Method ------------------\\
public static float FloatPower2(float number)
{
return number * number;
}
//--------------- My Bezier Lenght Calculator Method ------------------\\
public static float CubicBezierLenghtCalculator(float[] startPointPixel
, float[] firstControlPointPixel, float[] secondControlPointPixel, float[] endPointPixel)
{
float[] tmp = new float[2];
float lenght = 0;
float[] px = new float[1111], py = new float[1111];
float[] x = new float[4] { startPointPixel[0], firstControlPointPixel[0]
, secondControlPointPixel[0], endPointPixel[0] };
float[] y = new float[4] { startPointPixel[1], firstControlPointPixel[1]
, secondControlPointPixel[1], endPointPixel[1] };
int i = 0;
for (float t = 0; t <= 1.0; t += 0.001F)
{
px[i] = FloatPowerX((1.0F - t), 3) * x[0] + 3 * t * FloatPowerX((1.0F - t), 2) * x[1] + 3F * FloatPowerX(t, 2) * (1.0F - t) * x[2] + FloatPowerX(t, 3) * x[3];
py[i] = FloatPowerX((1.0F - t), 3) * y[0] + 3 * t * FloatPowerX((1.0F - t), 2) * y[1] + 3F * FloatPowerX(t, 2) * (1.0F - t) * y[2] + FloatPowerX(t, 3) * y[3];
if (i > 0)
{
tmp[0] = Math.Abs(px[i - 1] - px[i]);// calculating costal lenght
tmp[1] = Math.Abs(py[i - 1] - py[i]);// calculating costal lenght
lenght += (float)Math.Sqrt(FloatPower2(tmp[0]) + FloatPower2(tmp[1]));// calculating the lenght of current RightTriangle Chord & add it each time to variable
}
i++;
}
return lenght;
}
if you wish to have faster calculation just need to reduce px & py array lenght and loob count.
We also can decrease memory need by reducing px and py to array lenght to 1 or make a simple double variable but becuase of Conditional situation Happend which Increase Our Big O I didn't do that.
Hope it helped you so much. if have another question just ask. With Best regards, Heydar - Islamic Republic of Iran.