It is said that the complexity of the LinkedList remove and the add operation is of O(1)
. and in case of ArrayList
it is of O(n)
.
The complexity of removing is considered that you already have the pointer to the right position of the element you want to remove...
Is not considered the cost you took for finding it
Information on this topic is now available on Wikipedia at: Search data structure
+----------------------+----------+------------+----------+--------------+
| | Insert | Delete | Search | Space Usage |
+----------------------+----------+------------+----------+--------------+
| Unsorted array | O(1) | O(1) | O(n) | O(n) |
| Value-indexed array | O(1) | O(1) | O(1) | O(n) |
| Sorted array | O(n) | O(n) | O(log n) | O(n) |
| Unsorted linked list | O(1)* | O(1)* | O(n) | O(n) |
| Sorted linked list | O(n)* | O(1)* | O(n) | O(n) |
| Balanced binary tree | O(log n) | O(log n) | O(log n) | O(n) |
| Heap | O(log n) | O(log n)** | O(n) | O(n) |
| Hash table | O(1) | O(1) | O(1) | O(n) |
+----------------------+----------+------------+----------+--------------+
* The cost to add or delete an element into a known location in the list (i.e. if you have an iterator to the location) is O(1). If you don't know the location, then you need to traverse the list to the location of deletion/insertion, which takes O(n) time.
** The deletion cost is O(log n) for the minimum or maximum, O(n) for an arbitrary element.