Taking the following example:
>>> df1 = pd.DataFrame({\"x\":[1, 2, 3, 4, 5],
\"y\":[3, 4, 5, 6, 7]},
ind
Data:
In [55]: df1
Out[55]:
x y
a 1 3
b 2 4
c 3 5
d 4 6
e 5 7
In [56]: df2
Out[56]:
y z
b 1 9
c 3 8
d 5 7
e 7 6
f 9 5
Concatenated horizontally (axis=1), using index elements found in both DFs (aligned by indexes for joining):
In [57]: pd.concat([df1, df2], join='inner', axis=1)
Out[57]:
x y y z
b 2 4 1 9
c 3 5 3 8
d 4 6 5 7
e 5 7 7 6
Concatenated vertically (DEFAULT: axis=0), using columns found in both DFs:
In [58]: pd.concat([df1, df2], join='inner')
Out[58]:
y
a 3
b 4
c 5
d 6
e 7
b 1
c 3
d 5
e 7
f 9
If you don't use the inner
join method - you will have it this way:
In [62]: pd.concat([df1, df2])
Out[62]:
x y z
a 1.0 3 NaN
b 2.0 4 NaN
c 3.0 5 NaN
d 4.0 6 NaN
e 5.0 7 NaN
b NaN 1 9.0
c NaN 3 8.0
d NaN 5 7.0
e NaN 7 6.0
f NaN 9 5.0
In [63]: pd.concat([df1, df2], axis=1)
Out[63]:
x y y z
a 1.0 3.0 NaN NaN
b 2.0 4.0 1.0 9.0
c 3.0 5.0 3.0 8.0
d 4.0 6.0 5.0 7.0
e 5.0 7.0 7.0 6.0
f NaN NaN 9.0 5.0