I do as below:
data1 = pd.DataFrame({ \'b\' : [1, 1, 1], \'a\' : [2, 2, 2]})
data2 = pd.DataFrame({ \'b\' : [1, 1, 1], \'a\' : [2, 2, 2]})
frames = [data1, data2
You are creating DataFrames out of dictionaries. Dictionaries are a unordered which means the keys do not have a specific order. So
d1 = {'key_a': 'val_a', 'key_b': 'val_b'}
and
d2 = {'key_b': 'val_b', 'key_a': 'val_a'}
are (probably) the same.
In addition to that I assume that pandas sorts the dictionary's keys descending by default (unfortunately I did not find any hint in the docs in order to prove that assumption) leading to the behavior you encountered.
So the basic motivation would be to resort / reorder the columns in your DataFrame. You can do this as follows:
import pandas as pd
data1 = pd.DataFrame({ 'b' : [1, 1, 1], 'a' : [2, 2, 2]})
data2 = pd.DataFrame({ 'b' : [1, 1, 1], 'a' : [2, 2, 2]})
frames = [data1, data2]
data = pd.concat(frames)
print(data)
cols = ['b' , 'a']
data = data[cols]
print(data)