Can I combine all the sections “Objdump -S -d elf-file” generate into a re-assemble capable file?

匿名 (未验证) 提交于 2019-12-03 08:28:06

问题:

THe elf file is static linked

and currently the objdump's output is something like:

Disassembly of section: .init:  xxxxxx  Disassembly of section: .plt:  xxxxxx  Disassembly of section: .text:  xxxxxx 

basically what I want to achieve is

"elf-file -(disassemble by objdump)-> assemble file --(re-compile)--> same functionality"

I don't need the re-compiled binary has the binary content same as the original one, only same functionality is enough.

After a quick search, basically the answer is no, and they argued that disassemble file lost some stuff like symbolic information or others, but I think by static link, I can get rid of this issue...

Thank you!

回答1:

objdump -S -d elf-file is not usually sufficient, as it lacks .data section.

But it seems that objdump -S -D elf-file is sufficient.

To try this, I wrote a small x86-64 assembly file that uses extern printf, assembled it with YASM without debug symbols and linked with GCC.

 [bits 64]  ; yasm -f elf64 -m amd64 1st_generation.asm -o 1st_generation.o; gcc -o 1st_generation 1st_generation.o  section .text global main extern printf  main:     push    rbp     mov     rbp,rsp     lea     rdi,[msg]     mov     rsi,[num]     xor     eax,eax     call    printf     mov     eax,60     xor     ebx,ebx     syscall  section .data  msg db 'abcdef = %d', 0xa, 0 num dd 1337  testmsg1: db "test 01", 0x0a, 0 

Then I disassembled it with objdump -S -D -M intel elf-file >objdump_output.txt. -M intel produces the disassembly in Intel format. AT&T would work too, but I prefer Intel format for its clarity.

Then I wrote a small gawk program objdump_to_asm to convert the disassembly produced by objdump -S -D -M intel elf-file >objdump_output.txt into a suitable format for YASM. Assumes x86-64 code and main as entry point. Can be easily edited to different kinds of environment (x86 is trivial, others may need more work). Usage ./objdump_to_asm objdump_output.txt. Interestingly 1st generation executable has size of 6598 bytes, whereas 2nd generation executable has size of only 6496 bytes. 3rd generation assembly code is identical with the 2nd generation assembly code.

Here's the code:

#!/usr/bin/awk -f BEGIN{     disassembly_of_section_string = "Disassembly of section ";      sections_to_discard[1] = ".interp";     sections_to_discard[2] = ".note.ABI-tag";     sections_to_discard[3] = ".note.gnu.build-id";     sections_to_discard[4] = ".dynsym";     sections_to_discard[5] = ".dynstr";     sections_to_discard[6] = ".hash";     sections_to_discard[7] = ".gnu.hash";     sections_to_discard[8] = ".gnu.version";     sections_to_discard[9] = ".gnu.version_r";     sections_to_discard[10] = ".rela.dyn";     sections_to_discard[11] = ".rela.init";     sections_to_discard[12] = ".eh_frame";     sections_to_discard[13] = ".dynamic";     sections_to_discard[14] = ".got";     sections_to_discard[15] = ".got.plt";     sections_to_discard[16] = ".jcr";     sections_to_discard[17] = ".init_array";     sections_to_discard[18] = ".comment";     sections_to_discard[19] = ".note.gnu.gold-version";      number_of_sections_to_discard = length(sections_to_discard);      sections_to_handle[1] = ".plt";     sections_to_handle[2] = ".text";     sections_to_handle[3] = ".data";     sections_to_handle[4] = ".bss";      number_of_sections_to_handle = length(sections_to_handle);      blocks_to_discard_in_text[1] = "<call_gmon_start>:";     blocks_to_discard_in_text[2] = "<deregister_tm_clones>:";     blocks_to_discard_in_text[3] = "<register_tm_clones>:";     blocks_to_discard_in_text[4] = "<__do_global_dtors_aux>:";     blocks_to_discard_in_text[5] = "<frame_dummy>:"     blocks_to_discard_in_text[6] = "<__libc_csu_fini>:"     blocks_to_discard_in_text[7] = "<__libc_csu_init>:"     blocks_to_discard_in_text[8] = "<_start>:"; # !!!      number_of_blocks_to_discard_in_text = length(blocks_to_discard_in_text);      blocks_to_handle_in_text[1] = "main"      number_of_blocks_to_handle_in_text = length(blocks_to_handle_in_text);      blocks_to_handle_in_data[1] = "__dso_handle"      number_of_blocks_to_handle_in_data = length(blocks_to_handle_in_data);      externs_to_handle[1] = "printf";      number_of_externs_to_handle = length(externs_to_handle);      hexdump_start_byte = 11;     disassembly_start_byte = 33;      current_section = "";      getline;     getline;      file_format_index = match($0, "file format elf64-x86-64")     if (file_format_index > 0)     {         print "[bits 64]";     } } {     match_index = 0; # 0 : no match, > 0 : match.     i = 1;           # index to sections_to_handle .     while (i <= number_of_sections_to_handle)     {         match_index = match($0, (disassembly_of_section_string sections_to_handle[i]));         if (match_index > 0) # we have a section to handle.         {             current_section = sections_to_handle[i];             getline;             break;         }         i++;     }      match_index = 0; # 0 : no match, > 0 : match.     i = 1;           # index to sections_to_discard .     while (i <= number_of_sections_to_discard)     {         match_index = match($0, (disassembly_of_section_string sections_to_discard[i]));         if (match_index > 0) # we have a section to discard.         {             current_section = sections_to_discard[i];             getline;             break;         }         i++;     }      if (match (current_section, ".plt"))     {         match_index = 0; # 0 : no match, > 0 : match.         i = 1;           # index to externs_to_handle.          while (i <= number_of_externs_to_handle)         {             match_index = match($0, ("<" externs_to_handle[i] "@plt>:"));              if (match_index > 0)    # we have an extern to handle.             {                 print "extern " externs_to_handle[i];                 getline;                 break;             }             i++;         }     }     if (match (current_section, ".text"))     {         match_index = 0; # 0 : no match, > 0 : match.         i = 1;           # index to the blocks of section .text .           while (i <= number_of_blocks_to_handle_in_text)         {             match_index = match($0, ("<" blocks_to_handle_in_text[i] ">:"));              if (match_index > 0)    # we have a block to handle.             {                 print "section .text";                 print "global main";                 print blocks_to_handle_in_text[i] ":";                 getline;                  while ((length ($0)) > 0)                 {                     disassembly_without_hex_bytes = substr($0, disassembly_start_byte);                     disassembly_without_hex_bytes = gensub(/PTR /, "", "g", disassembly_without_hex_bytes);                     disassembly_without_hex_bytes = gensub(/(ds:)([a-z0-9]*)/, "[\\2]", "g", disassembly_without_hex_bytes);                      match_index = 0; # 0 : no match, > 0 : match.                     j = 1;           # index to externs to handle.                      while (j <= number_of_externs_to_handle)                     {                         match_index = match(disassembly_without_hex_bytes, ("<" externs_to_handle[i] "@plt>"));                          if (match_index > 0)    # we have an extern to handle.                         {                             current_extern_to_handle = externs_to_handle[j];                             "echo '" disassembly_without_hex_bytes "' | sed 's/\\([0-9]*\\)\\( <\\)\\(" current_extern_to_handle "\\)\\(@plt>\\)/\\3/g'" |& getline disassembly_without_hex_bytes;                             close("echo '" disassembly_without_hex_bytes "' | sed 's/\\([0-9]*\\)\\( <\\)\\(" current_extern_to_handle "\\)\\(@plt>\\)/\\3/g'");                             break;                         }                         j++;                     }                      if (match(disassembly_without_hex_bytes, "data32") != 1)                     {                         print disassembly_without_hex_bytes;                     }                     getline;                 }                 break;             }             i++;         }     }      if (match (current_section, ".data"))     {         match_index = 0; # 0 : no match, > 0 : match.         i = 1;           # index to the blocks of section .data .          while (i <= number_of_blocks_to_handle_in_data)         {             match_index = match($0, ("<" blocks_to_handle_in_data[i] ">:"));              if (match_index > 0)    # we have a block to handle.             {                 print "section .data";                 getline;                  while ((length ($0)) > 0)                 {                     getline;                     hexdump_only = substr($0, hexdump_start_byte, (disassembly_start_byte - hexdump_start_byte));                     hexdump_only = gensub(/([[:alnum:]]+)/, "0x\\1", "g", hexdump_only);                     hexdump_only = gensub(/(0x[[:alnum:]]+)( )(0x[[:alnum:]]+)/, "\\1, \\3", "g", hexdump_only);                     hexdump_only = gensub(/(0x[[:alnum:]]+)( )(0x[[:alnum:]]+)/, "\\1, \\3", "g", hexdump_only);                     if (match (hexdump_only, "0x") > 0)                     {                         print "db " hexdump_only;                     }                 }                 break;             }             i++;         }     } } 

Executing ./objdump_to_asm objdump_output.txt >2nd_generation.asm produces the following assembly file. Assembles with YASM, links with GCC. The assembled and linked executable is not identical with the original, actually it's 6496 bytes, whereas the original executable has size of 6568 bytes.

 [bits 64] extern printf section .text global main main: push   rbp mov    rbp,rsp lea    rdi,[0x401958]  mov    rsi,QWORD [0x401965]  xor    eax,eax call   printf mov    eax,0x3c xor    ebx,ebx syscall   section .data db 0x61                      db 0x62                      db 0x63, 0x64, 0x65, 0x66            db 0x20, 0x3d, 0x20, 0x25, 0x64, 0x0a        db 0x00, 0x39                    db 0x05, 0x00, 0x00, 0x74, 0x65          db 0x73, 0x74                    db 0x20, 0x30                    db 0x31, 0x0a                    db 0x00, 0x00                    


回答2:

At least some "middle stage" is probably needed to make the reloc-info into assembler accepted form. What I have seen (Linux), the code is partially (internally) linked, and the label info is then replaced by reloc info.

You see them as jumps to the jump instructions themselves and reloc info about what to do to the jump target address at load time.



标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!