tf.layers.batch_normalization large test error

匿名 (未验证) 提交于 2019-12-03 01:27:01

问题:

I'm trying to use batch normalization. I tried to use tf.layers.batch_normalization on a simple conv net for mnist.

I get high accuracy for train step (>98%) but very low test accuracy (

my code

# Input placeholders x = tf.placeholder(tf.float32, [None, 784], name='x-input') y_ = tf.placeholder(tf.float32, [None, 10], name='y-input') is_training = tf.placeholder(tf.bool)  # inut layer input_layer = tf.reshape(x, [-1, 28, 28, 1]) with tf.name_scope('conv1'):     #Convlution #1 ([5,5] : [28x28x1]->[28x28x6])     conv1 = tf.layers.conv2d(         inputs=input_layer,         filters=6,         kernel_size=[5, 5],         padding="same",         activation=None     )         #Batch Norm #1     conv1_bn = tf.layers.batch_normalization(         inputs=conv1,         axis=-1,         momentum=0.9,         epsilon=0.001,         center=True,         scale=True,         training = is_training,         name='conv1_bn'     )      #apply relu     conv1_bn_relu = tf.nn.relu(conv1_bn)     #apply pool ([2,2] : [28x28x6]->[14X14X6])     maxpool1=tf.layers.max_pooling2d(         inputs=conv1_bn_relu,         pool_size=[2,2],         strides=2,         padding="valid"     )  with tf.name_scope('conv2'):     #convolution #2 ([5x5] : [14x14x6]->[14x14x16]     conv2 = tf.layers.conv2d(         inputs=maxpool1,         filters=16,         kernel_size=[5, 5],         padding="same",         activation=None     )         #Batch Norm #2     conv2_bn = tf.layers.batch_normalization(         inputs=conv2,         axis=-1,         momentum=0.999,         epsilon=0.001,         center=True,         scale=True,         training = is_training     )      #apply relu     conv2_bn_relu = tf.nn.relu(conv2_bn)     #maxpool2 ([2,2] : [14x14x16]->[7x7x16]     maxpool2=tf.layers.max_pooling2d(         inputs=conv2_bn_relu,         pool_size=[2,2],         strides=2,         padding="valid"     )  #fully connected 1 [7*7*16 = 784 -> 120] maxpool2_flat=tf.reshape(maxpool2,[-1,7*7*16]) fc1 = tf.layers.dense(     inputs=maxpool2_flat,     units=120,     activation=None )  #Batch Norm #2 fc1_bn = tf.layers.batch_normalization(     inputs=fc1,     axis=-1,     momentum=0.999,     epsilon=0.001,     center=True,     scale=True,     training = is_training ) #apply reliu  fc1_bn_relu = tf.nn.relu(fc1_bn)  #fully connected 2 [120-> 84] fc2 = tf.layers.dense(     inputs=fc1_bn_relu,     units=84,     activation=None )  #apply relu fc2_bn_relu = tf.nn.relu(fc2)  #fully connected 3 [84->10]. Output layer with softmax y = tf.layers.dense(     inputs=fc2_bn_relu,     units=10,     activation=None )  #loss cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) tf.summary.scalar('cross entropy', cross_entropy)  correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy',accuracy)  #merge summaries and init train writer sess = tf.Session() merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(log_dir + '/train' ,sess.graph) test_writer = tf.summary.FileWriter(log_dir + '/test')  train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) init = tf.global_variables_initializer() sess.run(init)  with sess.as_default():     def get_variables_values():         variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)         values = {}         for variable in variables:             values[variable.name[:-2]] = sess.run(variable, feed_dict={                 x:batch[0], y_:batch[1], is_training:True                 })         return values       for i in range(t_iter):         batch = mnist.train.next_batch(batch_size)         if i%100 == 0: #test-set summary             print('####################################')             values = get_variables_values()             print('moving variance is:')             print(values["conv1_bn/moving_variance"])             print('moving mean is:')             print(values["conv1_bn/moving_mean"])             print('gamma is:')             print(values["conv1_bn/gamma/Adam"])             print('beta is:')             print(values["conv1_bn/beta/Adam"])             summary, acc = sess.run([merged,accuracy], feed_dict={                 x:mnist.test.images, y_:mnist.test.labels, is_training:False              })          else:             summary, _ = sess.run([merged,train_step], feed_dict={                 x:batch[0], y_:batch[1], is_training:True             })             if i%10 == 0:                 train_writer.add_summary(summary,i)

I think the problem is that that the moving_mean/var is not being updated. I print the moving_mean/var during the run and I get: moving variance is: [ 1. 1. 1. 1. 1. 1.] moving mean is: [ 0. 0. 0. 0. 0. 0.] gamma is: [-0.00055969 0.00164391 0.00163301 -0.00206227 -0.00011434 -0.00070161] beta is: [-0.00232835 -0.00040769 0.00114277 -0.0025414 -0.00049697 0.00221556]

Anyone has any idea what i'm doing wrong?

回答1:

The operations which tf.layers.batch_normalization adds to update mean and variance don't automatically get added as dependencies of the train operation - so if you don't do anything extra, they never get run. (Unfortunately, the documentation doesn't currently mention this. I'm opening an issue about it.)

Luckily, the update operations are easy to get at, since they're added to the tf.GraphKeys.UPDATE_OPS collection. Then you can either run the extra operations manually:

extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) sess.run([train_op, extra_update_ops], ...)

Or add them as dependencies of your training operation, and then just run your training operation as normal:

extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(extra_update_ops):     train_op = optimizer.minimize(loss) ... sess.run([train_op], ...)


标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!