- tensorflow库内包含mnist,直接加载mnist数据并转为一维数组形式。直接加载的是.gz格式。
import tensorflow.examples.tutorials.mnist.input_data as input_data # 加载mnist数据 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # one_hot为是否将标签转为一维数组形式
- 加载数据
- 图片转为一维数组
- 建立模型:softmax回归模型
- w为可变n*784二维矩阵,b为10数组
- w、b变量初始化为0
- y=w*x+b
- 损失函数:交叉熵
- 训练模型
- 模型评估
# -*- coding: utf-8 -*- # 读取数据图片,预处理 import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data # 加载mnist数据 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # one_hot为是否将标签转为一维数组形式 # 构建softmax回归模型 sess = tf.InteractiveSession() # 交互作用类(不需用在计算前构建整个图) # 占位符(x和y_) x = tf.placeholder("float", shape=[None, 784]) # 浮点数,二维数组(第一维大小不定,第二维是784) y_ = tf.placeholder("float", shape=[None, 10]) # 用于代表对应某一MNIST图片的类别 # 变量(w权重和b偏置) w = tf.Variable(tf.zeros([784, 10])) # 784*10的可变参数值二维矩阵 b = tf.Variable(tf.zeros([10])) # 10维的向量 sess.run(tf.initialize_all_variables()) # 初始化所有变量为0 # 类别预测与损失函数 y = tf.nn.softmax(tf.matmul(x, w) + b) # 计算每个分类的softmax概率值 cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) # 损失函数(目标类别和预测类别之间的交叉熵) # 训练模型 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) # 最速下降法,步长为0.01 for i in range(1000): batch = mnist.train.next_batch(50) # 每步加载50个样本 train_step.run(feed_dict={x: batch[0], y_: batch[1]}) # feed_dict被每次训练的数据替代 # 模型评估 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) # 检测预测值与实际值是否匹配 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # 将布尔数组转化为正确率 print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) # 输出最终正确率
- 加载数据集
- 定义函数:
- 初始化函数
- 神经元模型:mlp、逻辑回归、s函数
- 照片转一维数组、确定测试、训练的照片、标签
- 占位符:定义张量
- 调用神经元模型函数
- 计算代价函数、构造优化器、求行最值
- 初始化变量、迭代100次
- 打印正确率
# -*- coding: utf-8 -*- # 神经网络 import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # 加载数据 def init_weight(shape): # 初始化 return tf.Variable(tf.random_normal(shape, stddev=0.01)) # (stddev是标准差,random_normal是正态分布的随机输出值)张量的可变随机值 def model(X, w_h, w_o): # 神经元模型 h = tf.nn.sigmoid(tf.matmul(X, w_h)) # 这是一个基本的mlp,两个堆栈逻辑回归 # X和w_h矩阵相乘,s函数 return tf.matmul(h, w_o) # 在最后不使用softmax,因为代价函数 # 返回h和w_o的两矩阵之积 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 把数据转换为一位数组的格式 trX = mnist.train.images # 训练的图片 trY = mnist.train.labels # 训练的标签 teX = mnist.test.images # 测试的图片 teY = mnist.test.labels # 测试的标签 # 占位符 X = tf.placeholder("float", [None, 784]) # 第一维长度不定,第二维长度为784的二维矩阵 浮点数 784=28*28 Y = tf.placeholder("float", [None, 10]) # 输出的10种情况 w_h = init_weight([784, 625]) # 创建特征变量 # 调用上边自定义的函数,对矩阵进行初始化 w_o = init_weight([625, 10]) # 初始化 py_x = model(X, w_h, w_o) # 调用上边的自定义函数, cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # 计算代价 train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # 构造优化器 # 0.05的学习率使代价函数最小 predict_op = tf.argmax(py_x, 1) # 求行中最大值 # 在会话中启动图表 with tf.Session() as sess: # 初始化所有变量 tf.global_variables_initializer().run() # 添加用于初始化变量的节点, for i in range(100): # 迭代100次 for start, end in zip(range(0, len(trX)), range(128, len(trX)+1, 128)): # zip函数是将两个列表打包为元组的列表,元素个数与最短列表一致 sess.run(train_op, feed_dict={X: trX[start: end], Y: trY[start:end]}) # 跑 print(i, np.mean(np.argmax(teY, axis=1) == sess.run(predict_op, feed_dict={X: teX}))) # mean函数是求平均值,打印预测和实际相同时的概率 # for i in range(100): # for start, end in zip(range(0, 1000), range(128, 1000+1, 128)): # sess.run(train_op, feed_dict={X: trX[start: end], Y: trY[start:end]}) # print(i, np.mean(np.argmax(teY, axis=1) == # sess.run(predict_op, feed_dict={X: teX})))
- CNN
- 输入层
- 卷积层
- 激活函数
- 池化层
- 全连接层
卷积就是为了降维
池化就是数据压缩,特征压缩(提取主要特征)
- 加载数据
- 定义初始化函数、定义模型函数(relu、max_pool、dropout)
- 图片转一维数组
- 张量、初始化
- 调用模型函数
- 训练的下降率
- argmax
- 迭代10次
- 测试集是打乱的(np.random.shuffle)
- 打印准确率
# -*- coding: utf-8 -*- # # # # # 读取数据图片,预处理 # # import tensorflow as tf # # import tensorflow.examples.tutorials.mnist.input_data as input_data # 加载mnist数据 # # mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # one_hot为是否将标签转为一维数组形式 # # # # 构建一个多层卷积神经网络 # import tensorflow as tf # # # # 权重初始化 # def weight_variable(shape): # 权重 # initial = tf.truncated_normal(shape, stddev=0.01) # return tf.Variable(initial) # # # def bias_variable(shape): # 偏置 # initial = tf.constant(0.1, shape=shape) # return tf.Variable(initial) # # # # 卷积和池化 # def conv2d(x, W): # return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') # 1步长的卷积,0边距的模板(用0填充边界) # # # def max_pool_2x2(x): # 池化使用2*2的模板 # return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], # strides=[1, 2, 2, 1], padding='SAME') # # # # 第一层卷积 # W_conv1 = weight_variable([5, 5, 1, 32]) # 卷积在每个5*5的patch中算出32个特征 # b_conv1 = bias_variable([32]) # 每个输出的通道都有一个的对应的偏置量 # # x_image = tf.reshape(x, [-1, 28, 28, 1]) # x变为一个4d向量,第2、3维是图片的宽、高,第4维是图片的颜色通道数 # # h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # 把x_image和权值向量进行卷积,加上偏置项,然后使用RELU函数 # h_pool1 = max_pool_2x2(h_conv1) # 最后进行max_pooling(四个像素点中选取最大的) # # # # 第二层卷积 # W_conv2 = weight_variable([5, 5, 32, 64]) # 每个5*5的patch中算出64个特征 # b_conv2 = bias_variable([64]) # # h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # h_pool2 = max_pool_2x2(h_conv2) # # # # 密集层网络 # W_fc1 = weight_variable([7*7*64, 1024]) # 图片尺寸减少到了7*7,加入一个有1024个神经元的全连接层 # b_fc1 = bias_variable([1024]) # # h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) # 把池化层输出的张量reshape为一些向量 # h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # 乘上权重矩阵,加上偏置,然后使用RELU # # # # Droput(减少过拟合) # keep_prob = tf.placeholder("float") # 训练中启用dropout,测试中关闭的dropout # h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # # # # 输出层(添加一个softmax层) # W_fc2 = weight_variable([1024, 10]) # b_fc2 = bias_variable([10]) # # y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # softmax函数 # # # # 训练和模型评估(ADAM优化器做梯度下降,每100次迭代输出一次日志) # cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) # train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) # accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # sess.run(tf.initialize_all_variables()) # for i in range(20000): # batch = mnist.train.next_batch(50) # if i % 100 == 0: # train_accuracy = accuracy.eval(feed_dict={ # x: batch[0], y_: batch[1], keep_prob: 1.0 # }) # print('step %d, training accuracy %g' % i, train_accuracy) # train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) # # print('test accuracy %g' % accuracy.eval(feed_dict={ # x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0 # })) # # # ---------------------------------------------------------------------------------------------------------------------- # # # # -*- coding: utf-8 -*- # # # import tensorflow as tf # import numpy as np # from tensorflow.examples.tutorials.mnist import input_data # # # batch_size = 128 # test_size = 256 # # # def init_weights(shape): # return tf.Variable(tf.random_normal(shape, stddev=0.01)) # # # def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden): # l1a = tf.nn.relu(tf.nn.conv2d(X, w, # strides=[1, 1, 1, 1], padding='SAME')) # l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1], # strides=[1, 2, 2, 1], padding='SAME') # l1 = tf.nn.dropout(l1, p_keep_conv) # # l2a = tf.nn.relu(tf.nn.conv2d(l1, w2, # strides=[1, 1, 1, 1], padding='SAME')) # l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1], # strides=[1, 2, 2, 1], padding='SAME') # l2 = tf.nn.dropout(l2, p_keep_conv) # # l3a = tf.nn.relu(tf.nn.conv2d(l2, w3, # strides=[1, 1, 1, 1], padding='SAME')) # l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1], # strides=[1, 2, 2, 1], padding='SAME') # l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]]) # l3 = tf.nn.dropout(l3, p_keep_conv) # # l4 = tf.nn.relu(tf.matmul(l3, w4)) # l4 = tf.nn.dropout(l4, p_keep_conv) # # pyx = tf.matmul(l4, w_o) # return pyx # # # mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels # trX = trX.reshape(-1, 28, 28, 1) # teX = teX.reshape(-1, 28, 28, 1) # # # X = tf.placeholder("float", [None, 28, 28, 1]) # Y = tf.placeholder("float", [None, 10]) # # # w = init_weights([3, 3, 1, 32]) # w2 = init_weights([3, 3, 32, 64]) # w3 = init_weights([3, 3, 64, 128]) # w4 = init_weights([128 * 4 * 4, 625]) # w_o = init_weights([625, 10]) # # # p_keep_conv = tf.placeholder("float") # p_keep_hidden = tf.placeholder("float") # py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden) # # # cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) # predict_op = tf.argmax(py_x, 1) # # # # # with tf.Session() as sess: # # # tf.global_variables_initializer().run() # # for i in range(10): # train_batch = zip(range(0, len(trX), batch_size), # range(batch_size, len(trX) + 1, batch_size)) # for start, end in train_batch: # sess.run(train_op, feed_dict={X: trX[start: end], Y: trY[start: end], # p_keep_conv: 0.8, p_keep_hidden: 0.5}) # # test_indices = np.arange(len(teX)) # np.random.shuffle(test_indices) # test_indices = test_indices[0:test_size] # # print(i, np.mean(np.argmax(teY[test_indices], axis=1) == # sess.run(predict_op, feed_dict={X: teY[test_indices], # Y: teY[test_indices], # p_keep_conv: 1.0, # p_keep_hidden: 1.0}))) # ---------------------------------------------------------------------------------------------------------------------- import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # 加载数据 batch_size = 128 test_size = 256 def init_weights(shape): # 初始化 return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden): # 定义的模型函数 l1a = tf.nn.relu(tf.nn.conv2d(X, w, strides=[1, 1, 1, 1], padding='SAME')) # l1a shape=(?, 28, 28, 32) l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1], # l1 shape=(?, 14, 14, 32) strides=[1, 2, 2, 1], padding='SAME') l1 = tf.nn.dropout(l1, p_keep_conv) l2a = tf.nn.relu(tf.nn.conv2d(l1, w2, strides=[1, 1, 1, 1], padding='SAME')) # l2a shape=(?, 14, 14, 64) l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1], # l2 shape=(?, 7, 7, 64) strides=[1, 2, 2, 1], padding='SAME') l2 = tf.nn.dropout(l2, p_keep_conv) l3a = tf.nn.relu(tf.nn.conv2d(l2, w3, strides=[1, 1, 1, 1], padding='SAME')) # l3a shape=(?, 7, 7, 128) l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1], # l3 shape=(?, 4, 4, 128) strides=[1, 2, 2, 1], padding='SAME') l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]]) # reshape to (?, 2048) l3 = tf.nn.dropout(l3, p_keep_conv) l4 = tf.nn.relu(tf.matmul(l3, w4)) l4 = tf.nn.dropout(l4, p_keep_hidden) pyx = tf.matmul(l4, w_o) return pyx mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 将照片转一维数组 trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels # 定义训练、测试的图片、属性 trX = trX.reshape(-1, 28, 28, 1) # 28x28x1 input img teX = teX.reshape(-1, 28, 28, 1) # 28x28x1 input img X = tf.placeholder("float", [None, 28, 28, 1]) # 张量 浮点数 4维矩阵 Y = tf.placeholder("float", [None, 10]) w = init_weights([3, 3, 1, 32]) # 3x3x1 conv, 32 outputs w2 = init_weights([3, 3, 32, 64]) # 3x3x32 conv, 64 outputs w3 = init_weights([3, 3, 64, 128]) # 3x3x32 conv, 128 outputs w4 = init_weights([128 * 4 * 4, 625]) # FC 128 * 4 * 4 inputs, 625 outputs w_o = init_weights([625, 10]) # FC 625 inputs, 10 outputs (labels) p_keep_conv = tf.placeholder("float") # 卷积核多项式乘法 p_keep_hidden = tf.placeholder("float") # 隐藏的 py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden) # 调用模型函数 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # 准确率 train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) # 训练的下降率 predict_op = tf.argmax(py_x, 1) # 求行中最大 # with tf.Session() as sess: # 初始化所有可变值 tf.global_variables_initializer().run() # 跑 for i in range(10): # 迭代10次 training_batch = zip(range(0, len(trX), batch_size), range(batch_size, len(trX)+1, batch_size)) # 训练批次 for start, end in training_batch: # 训练 sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end], p_keep_conv: 0.8, p_keep_hidden: 0.5}) test_indices = np.arange(len(teX)) # 得到一个测试批 np.random.shuffle(test_indices) # 打乱测试集 test_indices = test_indices[0:test_size] print(i, np.mean(np.argmax(teY[test_indices], axis=1) == sess.run(predict_op, feed_dict={X: teX[test_indices], Y: teY[test_indices], p_keep_conv: 1.0, p_keep_hidden: 1.0}))) # 打印预准率
文章来源: 手写数字识别