匹配
设G = <V, E>, 若E*(E*?E)中任何两条边均不相邻,
则称E*ΪG中边独立集, 也称E*ΪG中的匹配(Matching);
ͼ(a)中, E*= { e1, e4, e7 }就是一个匹配。所谓任何两条边均不相邻,
通俗地讲,就是任何两条边都没有公共顶点。
若在E*中加入任意一条边所得集合都不是匹配, 则称E*Ϊ极大匹配;
边数最多的匹配称为最大匹配;
最大匹配的边数称为边独立数或匹配数, 记作β1(G), 简记为β1。
图(a)中, { e2, e6 }, { e3, e5 }, { e1, e4, e7 }都是极大匹配,
{ e1, e4, e7 }是最大匹配, β1 = 3。
图(b)中, { e1, e3 }, { e2, e4 }, { e4, e7 }都是极大匹配, Ҳ
都是最大匹配, β1 = 2。
二部图(二分图)
二部图:如果图G是一个简单图,它的顶点集合V是由两个没
有公共元素的子集X={X1,X2,..,Xm}与子集Y={Y1,Y2,…,Yn},
并且Xi与Xj(1≤i,j≤m)之间, Ys与Yt(1≤s,t≤m)之间没有边连接,
则G称为二部图。