Opencv和C++实现canny边缘检测

匿名 (未验证) 提交于 2019-12-03 00:30:01

Canny边缘检测主要包括:
图像的灰度化;
图像的高斯滤波;
计算出每一个像素点位置的梯度(X方向梯度、Y方向梯度、已经该点的梯度幅值)和方向角度;
局部非极大值抑制处理;
双阈值处理和连接处理;

Canny算法思路参考下面的博客:
https://blog.csdn.net/dcrmg/article/details/52344902
https://www.cnblogs.com/love6tao/p/5152020.html

我在下面直接给出可以运行的C++代码(Opencv2.4.9)

#include <iostream> #include "opencv2/opencv.hpp"  using namespace std; using namespace cv;  /* 生成高斯卷积核 kernel */ void Gaussian_kernel(int kernel_size, int sigma, Mat &kernel) {     const double PI = 3.1415926;     int m = kernel_size / 2;      kernel = Mat(kernel_size, kernel_size, CV_32FC1);     float s = 2 * sigma*sigma;     for (int i = 0; i < kernel_size; i++)     {         for (int j = 0; j < kernel_size; j++)         {             int x = i - m;             int y = j - m;              kernel.at<float>(i, j) = exp(-(x*x + y*y) / s) / (PI*s);         }     } }  /* 计算梯度值和方向 imageSource 原始灰度图 imageX X方向梯度图像 imageY Y方向梯度图像 gradXY XY方向的梯度值 pointDirection 梯度方向角度 */ void GradDirection(const Mat imageSource, Mat &imageX, Mat &imageY,Mat &gradXY, Mat &theta) {     imageX = Mat::zeros(imageSource.size(), CV_32SC1);     imageY = Mat::zeros(imageSource.size(), CV_32SC1);     gradXY = Mat::zeros(imageSource.size(), CV_32SC1);     theta = Mat::zeros(imageSource.size(), CV_32SC1);      int rows = imageSource.rows;     int cols = imageSource.cols;      int stepXY = imageX.step;     int step = imageSource.step;     /*     Mat.step参数指图像的一行实际占用的内存长度,因为opencv中的图像会对每行的长度自动补齐(8的倍数)     */     uchar *PX = imageX.data;     uchar *PY = imageY.data;     uchar *P = imageSource.data;     uchar *XY = gradXY.data;     for (int i = 1; i < rows - 1; i++)     {         for (int j = 1; j < cols - 1; j++)         {             int a00 = P[(i - 1)*step + j - 1];             int a01 = P[(i - 1)*step + j];             int a02 = P[(i - 1)*step + j + 1];              int a10 = P[i*step + j - 1];             int a11 = P[i*step + j];             int a12 = P[i*step + j + 1];              int a20 = P[(i + 1)*step + j - 1];             int a21 = P[(i + 1)*step + j];             int a22 = P[(i + 1)*step + j + 1];              double gradY = double(a02 + 2 * a12 + a22 - a00 - 2 * a10 - a20);             double gradX = double(a00 + 2 * a01 + a02 - a20 - 2 * a21 - a22);              //PX[i*stepXY + j*(stepXY / step)] = abs(gradX);             //PY[i*stepXY + j*(stepXY / step)] = abs(gradY);              imageX.at<int>(i, j) = abs(gradX);             imageY.at<int>(i, j) = abs(gradY);             if (gradX == 0)             {                 gradX = 0.000000000001;             }             theta.at<int>(i, j) = atan(gradY / gradX)*57.3;             theta.at<int>(i, j) = (theta.at<int>(i, j) + 360) % 360;             gradXY.at<int>(i, j) = sqrt(gradX*gradX + gradY*gradY);             //XY[i*stepXY + j*(stepXY / step)] = sqrt(gradX*gradX + gradY*gradY);         }      }     convertScaleAbs(imageX, imageX);     convertScaleAbs(imageY, imageY);     convertScaleAbs(gradXY, gradXY);  }  /* 局部非极大值抑制 沿着该点梯度方向,比较前后两个点的幅值大小,若该点大于前后两点,则保留,若该点小于前后两点,则置为0; imageInput 输入得到梯度图像 imageOutput 输出的非极大值抑制图像 theta 每个像素点的梯度方向角度 imageX X方向梯度 imageY Y方向梯度  */ void NonLocalMaxValue(const Mat imageInput, Mat &imageOutput, const Mat &theta, const Mat &imageX, const Mat &imageY) {     imageOutput = imageInput.clone();       int cols = imageInput.cols;     int rows = imageInput.rows;      for (int i = 1; i < rows - 1; i++)     {         for (int j = 1; j < cols - 1; j++)         {             if (0 == imageInput.at<uchar>(i, j))continue;              int g00 = imageInput.at<uchar>(i - 1, j - 1);             int g01 = imageInput.at<uchar>(i - 1, j);             int g02 = imageInput.at<uchar>(i - 1, j + 1);              int g10 = imageInput.at<uchar>(i , j - 1);             int g11 = imageInput.at<uchar>(i, j);             int g12 = imageInput.at<uchar>(i , j + 1);              int g20 = imageInput.at<uchar>(i + 1, j - 1);             int g21 = imageInput.at<uchar>(i + 1, j);             int g22 = imageInput.at<uchar>(i + 1, j + 1);              int direction = theta.at<int>(i, j); //该点梯度的角度值             int g1 = 0;              int g2 = 0;             int g3 = 0;             int g4 = 0;             double tmp1 = 0.0; //保存亚像素点插值得到的灰度数             double tmp2 = 0.0;             double weight = fabs((double)imageY.at<uchar>(i, j) / (double)imageX.at<uchar>(i, j));              if (weight == 0)weight = 0.0000001;             if (weight > 1)             {                 weight = 1 / weight;             }             if ((0 <= direction && direction < 45) || 180 <= direction &&direction < 225)             {                 tmp1 = g10*(1 - weight) + g20*(weight);                 tmp2 = g02*(weight)+g12*(1 - weight);             }             if ((45 <= direction && direction < 90) || 225 <= direction &&direction < 270)             {                 tmp1 = g01*(1 - weight) + g02*(weight);                 tmp2 = g20*(weight)+g21*(1 - weight);             }             if ((90 <= direction && direction < 135) || 270 <= direction &&direction < 315)             {                 tmp1 = g00*(weight)+g01*(1 - weight);                 tmp2 = g21*(1 - weight) + g22*(weight);             }             if ((135 <= direction && direction < 180) || 315 <= direction &&direction < 360)             {                 tmp1 = g00*(weight)+g10*(1 - weight);                 tmp2 = g12*(1 - weight) + g22*(weight);             }              if (imageInput.at<uchar>(i, j) < tmp1 || imageInput.at<uchar>(i, j) < tmp2)             {                 imageOutput.at<uchar>(i,j) = 0;             }         }     }  }  /* 双阈值的机理是: 指定一个低阈值A,一个高阈值B,一般取B为图像整体灰度级分布的70%,且B为1.5到2倍大小的A; 灰度值小于A的,置为0,灰度值大于B的,置为255;  连接处理: 灰度值介于A和B之间的,考察改像素点临近的8像素是否有灰度值为255的,若没有255的,表示这是一个孤立的局部极大值点,予以排除,置为0;若有255的,表示这是一个跟其他边缘有“接壤”的可造之材,置为255,之后重复执行该步骤,直到考察完之后一个像素点。 */ void DoubleThreshold(Mat &imageInput, const double lowThreshold, const double highThreshold) {     int cols = imageInput.cols;     int rows = imageInput.rows;     for (int i = 0; i < rows; i++)     {         for (int j = 0; j < cols; j++)         {             double temp = imageInput.at<uchar>(i, j);             temp = temp>highThreshold ? (255) : (temp);             temp = temp < lowThreshold ? (0) : (temp);             imageInput.at<uchar>(i, j) = temp;         }     }      for (int i = 1; i < rows - 1; i++)     {         for (int j = 1; j < cols - 1; j++)         {             double temp = imageInput.at<uchar>(i, j);             if (temp<lowThreshold || temp>highThreshold)continue;             bool change = false;             for (int k = -1; k <= 1; k++)             {                 for (int u = -1; u <= 1; u++)                 {                     if (k == 0 && u == 0)continue;                     if (imageInput.at<uchar>(i + k, j + u) == 255)                     {                         change = true;                         break;                     }                 }                 if (change)break;             }             imageInput.at<uchar>(i, j) = (change) ? (255) : (0);         }     }  }   int main() {     Mat image = imread("test.jpg");     imshow("origin image", image);      //转换为灰度图     Mat grayImage;     cvtColor(image, grayImage, CV_RGB2GRAY);     imshow("gray image", grayImage);      //高斯滤波     Mat gausKernel;     int kernel_size = 5;     double sigma = 1;     Gaussian_kernel(kernel_size, sigma, gausKernel);     Mat gausImage;     filter2D(grayImage, gausImage, grayImage.depth(), gausKernel);     imshow("gaus image", gausImage);      //计算XY方向梯度     Mat imageX, imageY, imageXY;     Mat theta;     GradDirection(grayImage, imageX, imageY, imageXY , theta);     imshow("XY grad", imageXY);      //对梯度幅值进行非极大值抑制     Mat localImage;     NonLocalMaxValue(imageXY, localImage, theta,imageX,imageY);;     imshow("Non local maxinum image", localImage);      //双阈值算法检测和边缘连接     DoubleThreshold(localImage, 60, 100);     imshow("canny image", localImage);      Mat temMat;     Canny(image, temMat, 60, 100);     imshow("opencv canny image", temMat);      waitKey(0);     return 0; }
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!