import tensorflow as tf
import numpy as np d_scores = {} d_scores[0] = [[[1,2],[3,4],[5,6]],[[7,8],[9,10],[11,12]]] classes = tf.argmax(d_scores[0],axis=1) scores = tf.reduce_max(d_scores[0],axis=1) with tf.Session() as sess: print(classes.eval()) print(scores.eval())
结果
[[2 2]
import tensorflow as tf import numpy as np d_scores = {} d_scores[0] = [[[1,2],[3,4],[5,6]],[[7,8],[9,10],[11,12]]] classes = tf.argmax(d_scores[0],axis=2) scores = tf.reduce_max(d_scores[0],axis=2) with tf.Session() as sess: print(classes.eval()) print(scores.eval())
可以看出tf.argmax和tf.reduce_max会把指定维度降掉