tensorflow中tf.argmax和tf.reduce_max

匿名 (未验证) 提交于 2019-12-03 00:22:01
import tensorflow as tf
import numpy as np d_scores = {} d_scores[0] = [[[1,2],[3,4],[5,6]],[[7,8],[9,10],[11,12]]]  classes = tf.argmax(d_scores[0],axis=1) scores = tf.reduce_max(d_scores[0],axis=1)  with tf.Session() as sess:      print(classes.eval())     print(scores.eval())
结果

[[2 2]


import tensorflow as tf import numpy as np d_scores = {} d_scores[0] = [[[1,2],[3,4],[5,6]],[[7,8],[9,10],[11,12]]]  classes = tf.argmax(d_scores[0],axis=2) scores = tf.reduce_max(d_scores[0],axis=2)  with tf.Session() as sess:      print(classes.eval())     print(scores.eval())

可以看出tf.argmax和tf.reduce_max会把指定维度降掉

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!